113 Class Problems: Polynomial Factorization II

1. Determine if the following polynomials in $\mathbb{Q}[x]$ are irreducible.
(a) $14+42 x-90 x^{3}-9 x^{6}$
(b) $1+3 x^{2}+5 x^{3}-\frac{1}{3} x^{4}$
(c) $1+x+x^{3}$

Solutions:
imaducible by
a) Yes. Eisenstein with $\pi=2$

$$
\pi=3
$$

b) Yo $1+3 x^{2}+5 x^{3}-\frac{1}{3} x^{4}=\frac{1}{3}\left(3+9 x^{2}+15 x-x^{4}\right)$

$$
\Rightarrow 1+3 x^{2}+5 x^{3}-\frac{1}{3} x^{4} \text { imsoluaibl. }
$$

c) Yes
$\left(+x+x^{3}\right.$ monic $\Rightarrow f(x)=0$ for $\Rightarrow \alpha \in \mathbb{Z}$ $\alpha \in a$

$$
f(x)=1+x+x^{3} \Rightarrow f^{\prime}(x)=1+3 x^{2}>0 \quad \forall x \in \mathbb{R}
$$

$\Rightarrow F(x)$ monotonic incosasing $f(-1)=-1, f(0)=1$
$\Rightarrow F \alpha \in \mathbb{Z}$ such that $f(x)=0 \Rightarrow 1+x+x^{3}$ imeducible
2. Let R be a UFD which is not a field. Prove that $\operatorname{Frac}(R)$ is not algebraically closed. Solutions:
Let $T \in R$ be imadncible

Eisenstein's Criterion $\Rightarrow \pi+\pi x+x^{2} \in \operatorname{Frac}(R)[x]$
is imoducibl \Rightarrow Frat (R) not algetonaically cloud

$$
\begin{aligned}
& \operatorname{deg}\left(1+x+x^{3}\right)=3 \Rightarrow 1+x+x^{3} \text { imoducibn } \Leftrightarrow \text { such than } \\
& \text { in Q } Q x \\
& f(a)=0
\end{aligned}
$$

3. (Hard) Let F be a field. Let H be a finite subgroup of the multiplicative group of units F^{*}. Prove that H is cyclic. Must this be true if F is not a field?
Solutions:
$H C F^{*}$ tinkle Abclian group. $\quad|H|=n$
Assume H not cyclic
Structure TCeeram $\Rightarrow \exists m<n$ such that $a^{m}=I_{F}$

$$
\text { Examph } n=12 s=s^{3} \Rightarrow(H, x) \cong\left\{\begin{array}{l}
\mathbb{Z} / 52 \times \mathbb{L} / s^{2} \mathbb{L} m=s^{2} \\
\mathbb{Z} / 52 \times \mathbb{Z} / 52 \times \mathbb{L} s^{2}
\end{array}\right.
$$

\Rightarrow Every $a \in 4$ is a root at $x^{a}-I_{F}$.
F a Field \Rightarrow number of distinct $\leqslant m<|H|$ rock st $x^{m}-1 F$

Contradiction Hence H is acyclic

