113 Class Problems: Polynomial Factorization II

- 1. Determine if the following polynomials in $\mathbb{Q}[x]$ are irreducible.
 - (a) $14 + 42x 90x^3 9x^6$
 - (b) $1 + 3x^2 + 5x^3 \frac{1}{3}x^4$
 - (c) $1 + x + x^3$
 - Solutions:

Solutions:	a contractular by
a) Ves. Eisenstein with TI=2	TI=3
6) Y_{a_1} (+3x ² + 5x ³ - $\frac{1}{3}x^4 = \frac{1}{3}(3+9x^2+15)$	x - x ⁴)
\Rightarrow $1+3\times^2+5\times^3-\frac{4}{3}\times^4$ inveducible.	
c) Yes	
oleg (1+x+x²) = 3 =) 1+2+x² inroducibl in Q[x]	$\exists \prec \in \mathbb{Q}$ $\uparrow (=) \text{such that}$ $\neq (=) = 0$
$(+x+x^3 \text{ mension }) f(x) = 0 \text{for } = 0 x \in \mathbb{Q}$ $\alpha \in \mathbb{Q}$	Z
4(x) = 1+x+x ² => 7(a) = 1+3x ² >0 4x	e R
\Rightarrow $\#(x)$ monotours increasing $\#(-1) = -1, \#(1)$	0) = (
\rightarrow $\overline{\mathcal{A}} \subset \mathbb{Z}$ such that $\overline{\mathcal{A}}(\sim) = 0 \Rightarrow 1 + \alpha + \alpha^3$ is 2. Let <i>R</i> be a UFD which is not a field. Prove that $Frac(R)$ is not a	∽educib ⊈ lgebraically closed.
Solutions: $Cet TT \in \mathbb{R}$ be Irradueible	R not a trad
Eisenstein's Criterion => TT + TT + 22 E	Frac(R)[2]
is inveducible => Frac (R) not algebraically	Arud

3. (Hard) Let F be a field. Let H be a finite subgroup of the multiplicative group of units F*. Prove that H is cyclic. Must this be true if F is not a field?
Solutions:

$$H \subset F^{\infty} \text{ Hindee Abodian group. } |H| = n$$

$$Assame H \underline{not} cyckic$$

$$Structure Theorem \Rightarrow \exists m < n such that $a^{m} = I_{F}$

$$\forall a \in H$$

$$Erromph \quad n = 123 = 5^{3} \Rightarrow (H, \pi) \cong \begin{cases} Z_{152} \times Z_{152} \times \dots \otimes Z_{152} \times Z_{152} \times \dots \otimes Z_{152} \times Z_{152} \times$$$$